Insect Recognition Using Sparse Coding and Decision Fusion

نویسندگان

  • An Lu
  • Xinwen Hou
  • Cheng-Lin Liu
  • Xiaolin Chen
چکیده

Insect recognition is a hard problem because the difference of appearance between insects is so small that only some entomologist experts can distinguish them. Besides that, insects are often composed of several parts (multiple views) which generate more degrees of freedom. This chapter proposes several discriminative coding approaches and one decision fusion scheme of heterogeneous class sets for insect recognition. The three discriminative coding methods use class specific concatenated vectors instead of traditional global coding vectors for insect image patches. The decision fusion scheme uses an allocation matrix for classifier selection and a weight matrix for classifier fusion, which is suitable for combining classifiers of heterogeneous class sets in multi-view insect image recognition. Experimental results on a Tephritidae dataset show that the three proposed discriminative coding methods perform well in insect recognition, and the proposed fusion scheme improves the recognition accuracy significantly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

Insect Species Recognition using Sparse Representation

Insect species recognition is a typical application of image categorization and object recognition. Unlike generic image categorization datasets (such as the Caltech 101 dataset) that have large variations between categories, the difference of appearance between insect species is so small that only some entomologist experts can distinguish them. Therefore, the state-of-the-art image categorizat...

متن کامل

Sparse Methods for Robust and Efficient Visual Recognition

Title of dissertation: Sparse Methods for Robust and Efficient Visual Recognition Sumit Shekhar, Doctor of Philosophy, 2014 Dissertation directed by: Professor Rama Chellappa Department of Electrical and Computer Engineering Visual recognition has been a subject of extensive research in computer vision. A vast literature exists on feature extraction and learning methods for recognition. However...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016